

3.3 VOLT CMOS ASYNCHRONOUS FIFO

512 x 9, 1,024 x 9, 2,048 x 9, 4,096 x 9, 8,192 x 9, 16,384 x 9

FEATURES:

- 3.3V family uses less power than the 5 Volt 7201/7202/7203/7204/ 7205/7206 family
- 512 x 9 organization (72V01)
- 1,024 x 9 organization (72V02)
- 2,048 x 9 organization (72V03)
- 4,096 X 9 organization (72V04)
- 8,192 x 9 organization (72V05)
- 16,384 X 9 organization (72V06)
- Functionally compatible with 720x family
- Low-power consumption
 - Active: 180 mW (max.)
 - Power-down: 18 mW (max.)
- 15 ns access time
- · Asynchronous and simultaneous read and write
- Fully expandable by both word depth and/or bit width
- Status Flags: Empty, Half-Full, Full
- Auto-retransmit capability
- Available in 32-pin PLCC
- Industrial temperature range (-40°C to +85°C) is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72V01/72V02/72V03/72V04/72V05/72V06 are dual-port FIFO memories that operate at a power supply voltage (Vcc) between 3.0V and 3.6V. Their architecture, functional operation and pin assignments are identical to those of the IDT7201/7202/7203/7204/7205/7206. These devices load and empty data on a first-in/first-out basis. They use Full and Empty flags to prevent data overflow and underflow and expansion logic to allow for unlimited expansion capability in both word size and depth.

IDT72V01. IDT72V02

IDT72V03, IDT72V04

IDT72V05, IDT72V06

The reads and writes are internally sequential through the use of ring pointers, with no address information required to load and unload data. Data is toggled in and out of the devices through the use of the Write (\overline{W}) and Read (\overline{R}) pins. The devices have a maximum data access time as fast as 25 ns.

The devices utilize a 9-bit wide data array to allow for control and parity bits at the user's option. This feature is especially useful in data communications applications where it is necessary to use a parity bit for transmission/reception error checking. They also feature a Retransmit (\overline{RT}) capability that allows for reset of the read pointer to its initial position when \overline{RT} is pulsed LOW to allow for retransmission from the beginning of data. A Half-Full Flag is available in the single device mode and width expansion modes.

These FIFOs are fabricated using IDT's high-speed CMOS technology. It has been designed for those applications requiring asynchronous and simultaneous read/writes in multiprocessing and rate buffer applications.

FUNCTIONAL BLOCK DIAGRAM

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'l & Ind'l	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tstg	Storage Temperature	–55 to +125	°C
Ιουτ	DC Output Current	-50 to +50	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Rating	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	٧
VIH ⁽¹⁾	Input High Voltage	2.0	_	Vcc+0.5	V
VIL ⁽²⁾	Input Low Voltage	_	_	0.8	V
ΤΑ	Operating Temperature Commercial	0	_	70	°C
TA	Operating Temperature Industrial	-40	_	85	°

NOTES:

1. For $\overline{\text{RT/RS/XI}}$ input, VIH = 2.6V (commercial).

For $\overline{RT}/\overline{RS}/\overline{XI}$ input, $V_{IH} = 2.8V$ (military).

2. 1.5V undershoots are allowed for 10ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: VCC = $3.3V \pm 0.3V$, TA = 0°C to +70°C; Industrial: VCC = $3.3V \pm 0.3V$, TA = -40°C to +85°C)

		IDT72V01 IDT72V02 IDT72V03 IDT72V04 Commercial & Industrial ⁽¹⁾ tA = 15, 25, 35 ns		IDT72V05 IDT72V06 Commercial & Industrial ⁽¹⁾ tA = 15, 25, 35 ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
LI ⁽²⁾	Input Leakage Current (Any Input)	-1	1	-1	1	μA
LO ⁽³⁾	Output Leakage Current	-10	10	-10	10	μA
Voн	Output Logic "1" Voltage Iон = –2mA	2.4	_	2.4	—	V
Vol	Output Logic "0" Voltage IoL = 8mA	—	0.4	—	0.4	V
ICC1 ^(4,5)	Active Power Supply Current	—	60	_	75	mA
ICC2 ^(4,6)	Standby Current ($\overline{R}=\overline{W}=\overline{RS}=\overline{FL}/\overline{RT}=VH$)	—	5	_	5	mA

NOTES:

1. Industrial temperature range product for the 25ns speed grade is available as a standard device. All other speed grades are available by special order.

2. Measurements with $0.4 \leq V_{IN} \leq V_{CC}$.

3. $\overline{R} \ge V_{IH}$, $0.4 \le V_{OUT} \le V_{CC}$.

4. Tested with outputs open (IOUT = 0).

5. Tested at f = 20 MHz.

6. All Inputs = Vcc - 0.2V or GND + 0.2V.

CAPACITANCE (TA = +25°C, f = 1.0 MHz)

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
Cin	Input Capacitance	VIN = 0V	8	рF
Соит	Output Capacitance	Vout = 0V	8	рF

NOTE:

1. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

(Commercial: Vcc = $3.3V \pm 0.3V$. TA = 0°C to ± 70 °C: Industrial: Vcc = $3.3V \pm 0.3V$. TA = -40°C to ± 85 °C)

		Comn	norcial	Comila	nd Ind'I ⁽²⁾	Comm	orcial	1
			1011 15		10 11 25		10101 25	1 1
			/01L15 /021 15		1021 25		01233	
		IDT72\	/03L15		03125	IDT72\	03135	
		IDT72	/04L15	IDT72	04L25	IDT72V	04L35	
		IDT72	/05L15	IDT72\	/05L25	IDT72V	05L35	
		IDT72	/06L15	IDT72\	/06L25	IDT72V	/06L35	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
1S	ShiftFrequency	<u> </u>	40	-	28.5		22.2	MHZ
1RC	Read Cycle Time	25		35		45	_	ns
tA	AccessTime		15	-	25	—	35	ns
<u>t</u> RR	Read Recovery Time	10	<u> </u>	10		10	—	ns
tRPW	Read Pulse Width ⁽³⁾	15	<u> </u>	25		35		ns
trlz	Read Pulse Low to Data Bus at Low Z ⁽⁴⁾	3	<u> </u>	3		3	_	ns
twlz	Write Pulse High to Data Bus at Low Z ^(4,5)	5	<u> </u>	5	_	5	_	ns
tDV	Data Valid from Read Pulse High	5		5		5	_	ns
trhz	Read Pulse High to Data Bus at High Z ⁽⁴⁾		15		18	_	20	ns
twc	Write Cycle Time	25		35	_	45	_	ns
twpw	Write Pulse Width ⁽³⁾	15		25	_	35		ns
twr	Write Recovery Time	10		10	_	10	_	ns
tDS	Data Setup Time	11		15		18		ns
1DH	Data Hold Time	0		0	_	0	_	ns
tRSC	Reset Cycle Time	25		35	_	45	_	ns
tRS	Reset Pulse Width ⁽³⁾	15	-	25	—	35	—	ns
tRSS	Reset Setup Time ⁽⁴⁾	15	—	25	_	35	—	ns
t RSR	Reset Recovery Time	10	—	10	_	10	—	ns
t RTC	Retransmit Cycle Time	25	—	35	—	45	—	ns
trt	Retransmit Pulse Width ⁽³⁾	15	—	25	—	35	—	ns
trts	Retransmit Setup Time ⁽⁴⁾	15	—	25	-	35	—	ns
t RTR	Retransmit Recovery Time	10	—	10	-	10	—	ns
tefl	Reset to Empty Flag Low	—	25	—	35	—	45	ns
thfh,ffh	Reset to Half-Full and Full Flag High	—	25	—	35	-	45	ns
t RTF	Retransmit Low to Flags Valid	—	25	_	35	—	45	ns
t REF	Read Low to Empty Flag Low	—	15	-	25	—	30	ns
tRFF	Read High to Full Flag High	—	15	_	25	—	30	ns
tRPE	Read Pulse Width after EF High	15	—	25	_	35	—	ns
tWEF	Write High to Empty Flag High	-	15	_	25	—	30	ns
twff	Write Low to Full Flag Low	_	15	—	25	—	30	ns
twhf	Write Low to Half-Full Flag Low	-	25	-	35	_	45	ns
tRHF	Read High to Half-Full Flag High	- 1	25	_	35	_	45	ns
twpf	Write Pulse Width after FF High	15	_	25	_	35	_	ns
txol	Read/Write to XO Low	_	15	—	25	_	35	ns
tхон	Read/Write to XO High	-	15	_	25	_	35	ns
txi	XI Pulse Width ⁽³⁾	15	-	25	_	35	_	ns
txir	XI Recovery Time	10	-	10	_	10	_	ns
txis	XI Setup Time	10	-	10	_	10	_	ns

NOTES:

1. Timings referenced as in AC Test Conditions.

2. Industrial temperature range product for the 25ns speed grade is available as a standard device.

All other speed grades are available by special order.

3. Pulse widths less than minimum value are not allowed.

Values guaranteed by design, not currently tested.
Only applies to read data flow-through mode.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
OutputLoad	See Figure 1

or equivalent circuit

Figure 1. Output Load

* Includes scope and jig capacitances.

3033 drw 21

NOTES:

- 1. Industrial temperature range product for the 25ns speed grade is available as a standard device. All other speed grades are available by special order.
- 2. Green parts are available. For specific speeds and packages contact your local sales office.